Subsea Risk and Reliability

Presented by

Oseghale Lucas Okohue BEng. Msc. CIPMP

www.chesssubseaengineering.com
Course Instructor

Name: Oseghale Lucas Okohue

Position: Subsea Engineer – Production Systems | Drilling Systems Specialist

Website: www.chesssubseaengineering.com

Email: oseghaleokohue@chesssubseaengineering.com

oseghaleokohue@gmail.com

Phone: 08139340494
Outline

Lecture 1: Introduction
 - Overview of Risk Management
 - Risk in Subsea Projects

Lecture 2: Risk Assessment
 - Assessment Parameters
 - Risk Assessment Methods
 - Risk Acceptance Criteria
 - Risk Identification
 - Risk Management Plan

Lecture 3: Environmental Impact Assessment
Outline

Lecture 4: Project Risk Management
 - Risk Reduction

Lecture 5: Reliability
 - Reliability Requirements
 - Reliability Processes
 - Proactive Reliability Techniques
 - Reliability Modeling
 - Reliability Block Diagrams (RBDs)

Lecture 6: Fault Tree Analysis (FTA)

Lecture 7: Qualification to Reduce Subsea Failures
Lecture 1: Subsea Risk and Reliability

Presented by

Oseghale Lucas Okohue BEng. Msc. CIPMP

www.chesssubseaengineering.com
Introduction

- The **exploration and production** of oil and gas resources entail a variety of risks, which, if not adequately managed, have the potential to result in a **major incident**.

- All **subsea field development procedures** involved in **designing**, **manufacturing**, **installing**, and **operating subsea equipment** are vulnerable to a financial impact if poor reliability is related to the procedure.

- Equipment reliability during exploration and production is one of the control factors on **safety, production availability, and maintenance costs**.
Introduction

- In the **early design phases**, the target levels of reliability and production availability can be controlled through application of a systematic and strict **reliability management program**.

- This **course presents** a recommended **systematic risk management program** and further describes a methodology for analyzing **field architectures** to improve the **reliability of system design** and to reduce operating expenses by using reliable engineering tools.